Update eidma

Signed-off-by: Abdulkadir Furkan Şanlı <abdulkadirfsanli@protonmail.com>
This commit is contained in:
Abdulkadir Furkan Şanlı
2019-11-20 11:07:13 +01:00
parent 6744f6ffc1
commit e6290c0bd2
10 changed files with 94 additions and 61 deletions

View File

@@ -7,11 +7,22 @@
<generator>Hugo -- gohugo.io</generator>
<language>en-us</language>
<copyright>© Abdulkadir Furkan Şanlı 2019</copyright>
<lastBuildDate>Mon, 04 Nov 2019 11:14:55 +0100</lastBuildDate>
<lastBuildDate>Wed, 20 Nov 2019 00:00:00 +0000</lastBuildDate>
<atom:link href="https://abdulocra.cy/index.xml" rel="self" type="application/rss+xml" />
<item>
<title>Introduction to Discrete Mathematics</title>
<link>https://abdulocra.cy/posts/eidma/</link>
<pubDate>Wed, 20 Nov 2019 00:00:00 +0000</pubDate>
<guid>https://abdulocra.cy/posts/eidma/</guid>
<description>Mathematics without infinitely small, continuous mathematical objects. The mathematics of finite sets. Propositional calculus Comes from the linguistic concept that things can be either true or false. We should avoid variables when forming statements, as they may change the logical value.
\(2=7\) statement \(x=5\) not a statement In logic we do not use the equals sign, we use the equivalence sign \(\equiv\).
Logical values (booleans) are denoted by either 0 or 1 (or t, f, etc.</description>
</item>
<item>
<title>about</title>
<link>https://abdulocra.cy/about/</link>
@@ -21,16 +32,5 @@
<description> name: Abdulkadir Furkan Şanlı handle: abdulocracy contact: email: my handle at disroot dot org irc (freenode): abdulocracy </description>
</item>
<item>
<title>Introduction to Discrete Mathematics</title>
<link>https://abdulocra.cy/posts/eidma/</link>
<pubDate>Mon, 04 Nov 2019 00:00:00 +0000</pubDate>
<guid>https://abdulocra.cy/posts/eidma/</guid>
<description>Mathematics without infinitely small, continuous mathematical objects. The mathematics of finite sets. Propositional calculus Comes from the linguistic concept that things can be either true or false. We should avoid variables when forming statements, as they may change the logical value.
\(2=7\) statement \(x=5\) not a statement In logic we do not use the equals sign, we use the equivalence sign \(\equiv\).
Logical values (booleans) are denoted by either 0 or 1 (or t, f, etc.</description>
</item>
</channel>
</rss>